

Introduction

★ Introduction & Motivation

* Existing methods of important people detection require massive quantities of labelled data and detecting important people in unlabeled images has not yet been developed. * The imbalance between the number of important people and non-important people in the picture will cause pseudo-labelling imbalance problem.

* Not all unlabelled images contain important people; images without such people represent noisy unlabelled samples during learning.

★ Contributions

* The proposed approach is the first to study on learning important people detection from partially labelled data.

* we contribute two large datasets called Extended-MS (EMS) and Extended-NCAA (ENCAA) for evaluation of semi-supervised important people detection by augmenting existing datasets with a large number of unlabelled images collected from the internet

* Extensive experiments verify the efficacy of our proposed method on important people detection of semi-supervised phase.

★ Detecting Noisy Unlabelled Images

* Image-specific effectiveness weight : ε

$$\varepsilon = 1 - \frac{H(z^+)}{H(M)}$$

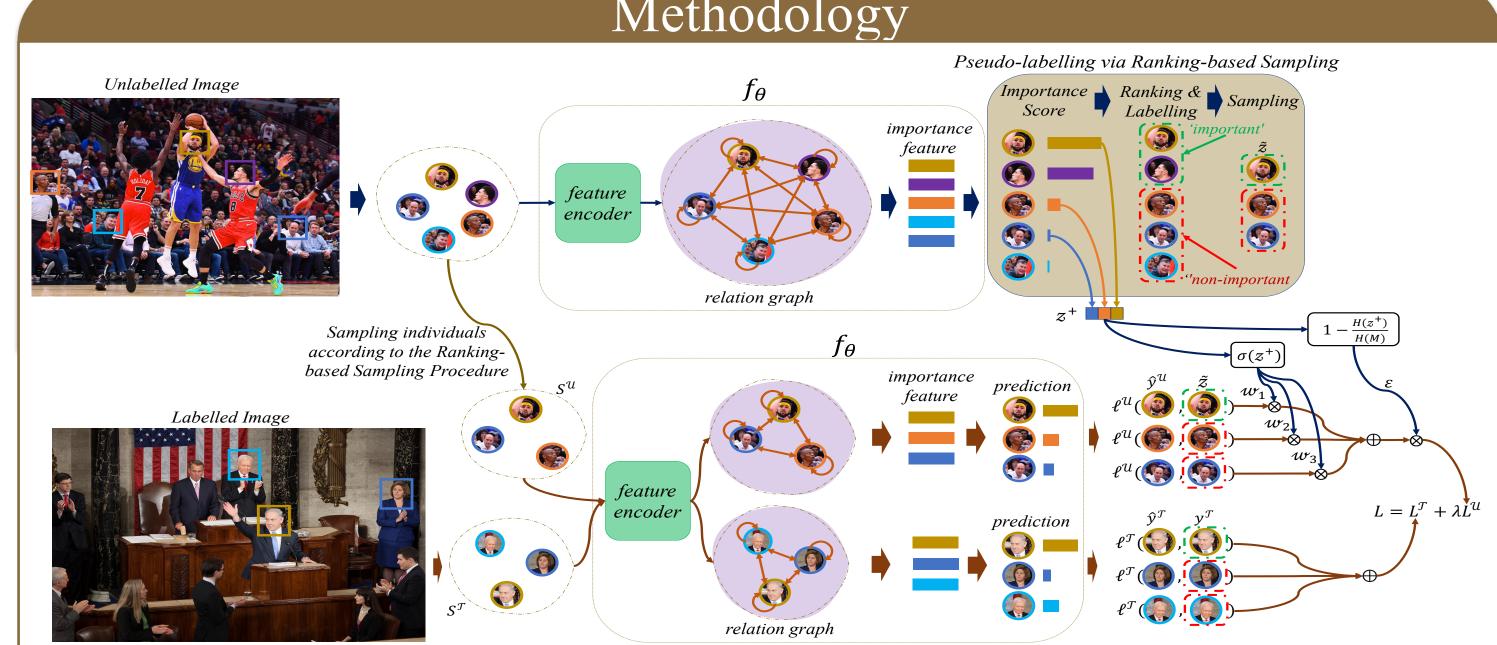
* Effectiveness weight reflect the confidence that an unlabelled image features important people:

$$L^{\mathcal{U}} = \frac{\lambda}{|\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \varepsilon_i \sum_{\substack{x_j^{\mathcal{U}} \in \mathcal{S}_i^{\mathcal{U}}}} w_j \ell^{\mathcal{U}}(\hat{y}_j^{\mathcal{U}}, \tilde{z}_j)$$

Learning to Detect Important People in Unlabelled Images for Semi-supervised Important People Detection

Fa-Ting Hong¹, Wei-Hong Li² and Wei-Shi Zheng¹ ¹Sun Yat-sen University ²University of Edinburgh

Methodology



★ Overview of Proposed Method * To alleviate the pseudo-labelling imbalance problem, we introduce a ranking strategy for pseudo-label estimation, and also introduce two weighting strategies applied to unlabelled data loss.

* The final objective function can be expressed as:

$$= L^{\mathcal{T}} + \lambda L^{\mathcal{U}}$$

= $\frac{1}{|\mathcal{T}|K} \sum_{i=1}^{|\mathcal{T}|} \sum_{x_j^{\mathcal{T}} \in \mathcal{S}_i^{\mathcal{T}}} \ell(\hat{\mathcal{Y}}_j^{\mathcal{T}}, \mathcal{Y}_j^{\mathcal{T}}) + \frac{\lambda}{|\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \epsilon$

s.t.
$$w_j \in \boldsymbol{w} = \sigma(z^+), \varepsilon_i = 1 - \frac{H(z^+)}{H(M)}$$

★ Pseudo-labelling by Ranking-based Sampling:

* Ranking-based sampling procedure:

$$S_i^{\mathcal{U}}, \tilde{z} = RankS(f_{\theta}, \{x_j^{\mathcal{U}}\}_{x_j^{\mathcal{U}} \in I_i^{\mathcal{U}}}, \alpha, K)$$

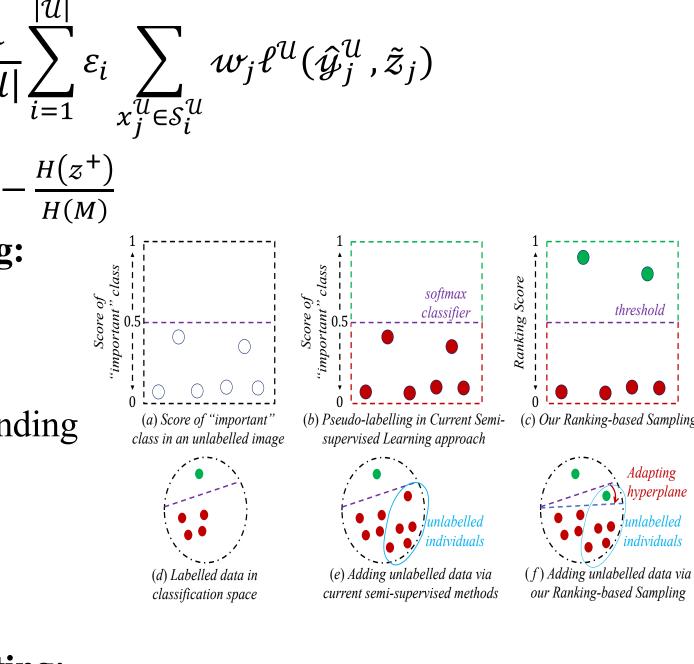
* Replacing the unlabelled people and corresponding pseudo-labels with those sampled by RankS:

$$L^{\mathcal{U}} = \frac{\lambda}{|\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \sum_{x_j^{\mathcal{U}} \in \mathcal{S}_i^{\mathcal{U}}} \mathcal{U}(\hat{\mathcal{Y}}_j^{\mathcal{U}}, \tilde{z}_j)$$

★ Balancing Loss via Importance Score Weighting:

* Person-specific importance score weight: w_i

 $L^{\mathcal{U}} = \frac{\lambda}{|\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} \sum_{\mathcal{V}_{\mathcal{L} \in S}^{\mathcal{U}}} w_j \ell^{\mathcal{U}}(\hat{y}_j^{\mathcal{U}}, \tilde{z}_j) \text{, s. t.} \sum_{j=1}^{\kappa} w_j = 1, w_j > 0.$



Experimental Results

\star Datasets

- * EMS Dataset: 10, 687 images from multiple scenes.
- * ENCAA Dataset: 28, 798 frames of basketball game video.

★ Comparisons with related methods on both datasets

Ours	87.81	88.44	89.79	88.75	90
Mean Teacher (MT)	84.50	86.29	87.55	83.33	84.
Label Propagation (LP)	82.34	86.33	86.66	85.36	88.
Pseudo Label (PL)	83.37	85.35	88.57	85.70	88.
POINT (fully supervised)	83.36	85.97	88.48	84.60	88.
#labelled images	33~%	66~%	100~%	33~%	66
Dataset		EMS			ENC

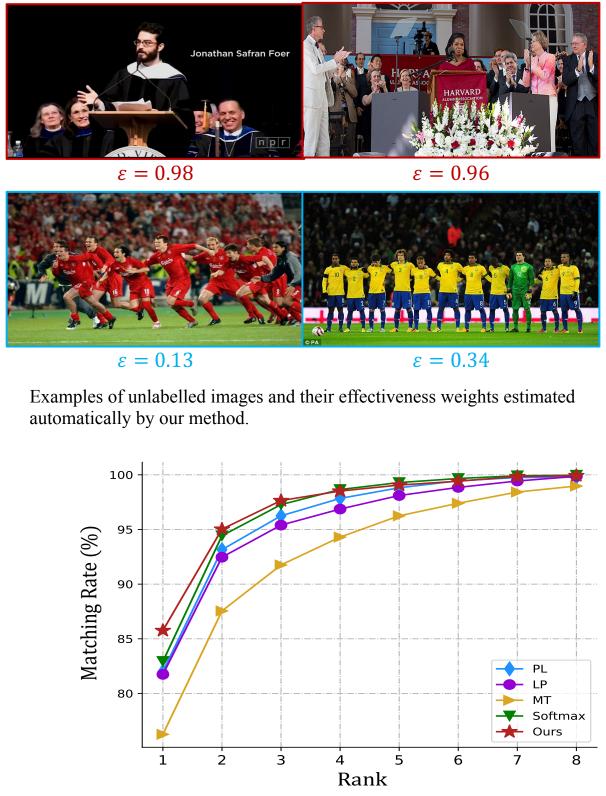
Table 1. Comparison with related methods on both datasets.

★ Evaluations of different components and techniques used to estimate importance score in proposed method

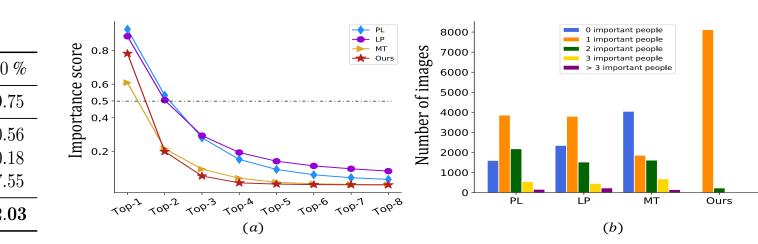
Dataset	EMS			ENCAA		
#labelled images	33~%	$66 \ \%$	100~%	33 %	66 %	100~%
Ours _{w/o Ranks} , ISW and EW	83.70	86.81	87.67	84.35	87.66	89.93
Ours _{w/o ISW} and EW	85.55	87.25	88.53	87.13	90.53	91.49
Ours _{w/o EW}	86.34	87.45	89.67	87.68	90.60	92.00
Ours	87.81	88.44	89.79	88.75	90.86	92.03

sents ranking-based sampling while ISW and EW indicate importance score weighting and effectiveness weighting, respectively. Ours_{w/o ISW and EW} means our model without using ISW and EW.

★ Visualize results



PR SEATTLE WASHINGTON JUNE 16-18 2020



giure (a) is the distribution of top 8 importance score in testing set in EMS datasets and Figure (b) is the statistics of unlabelled data's pseudo-labels on EMS dataset. Better view in color.

Dataset	EMS ENCAA					
#labelled images	33~%	$66 \ \%$	100~%	33 %	$66 \ \%$	100 %
Ours _{LP}	87.51	88.10	89.65	88.95	91.06	91.98
Ours _{MT}	87.23	88.56	90.72	88.97	90.93	91.62
Ours	87.81	88.44	89.79	88.75	90.86	92.03

Ablation study on both datasets. RankS repre- Table 3. Evaluation of different techniques (*i.e.*, LP and MT) when used for instantiating pseudo-label estimation function (i.e., $q(\cdot)$) instead of using Softmax function.

(a) CMC curve on EMS dataset

(c) Pseudo-labels predicted by Mean Teacher. (d) Pseudo-labels estimated by Label Propagatio

Examples of our method's results and pseudo-labels estimated by different methods during training

