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Y Contributions

partially labelled data.

detection of semi-supervised phase.

* Existing methods of important people detection require massive quantities of labelled
data and detecting important people 1n unlabeled 1mages has not yet been developed.

* The imbalance between the number of important people and non-important people 1n
the picture will cause pseudo-labelling imbalance problem.

* Not all unlabelled 1mages contain important people; 1images without such people
represent noisy unlabelled samples during learning.
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* The proposed approach 1s the first to study on learning important people detection from

* we contribute two large datasets called Extended-MS (EMS) and Extended- NCAA
(ENCAA) for evaluation of semi-supervised important people detection by augmenting
existing datasets with a large number of unlabelled images collected from the internet

* Extensive experiments verify the efficacy of our proposed method on important people
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% Detecting Noisy Unlabelled Images
* Image-specific effectiveness weight : ¢
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* Effectiveness weight reflect the confidence that an unlabelled image features important
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* Replacing the unlabelled people and corresponding
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Sampling individuals
according to the Ranking-
based Sampling Procedure

% Overview of Prpoed Method

* To alleviate the pseudo-labelling imbalance problem, we introduce a ranking strategy for
pseudo-label estimation, and also introduce two weighting strategies applied to unlabelled
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Pseudo-labelling via Ranking-based Sampling
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% Pseudo-labelling by Ranking-based Sampling:
* Ranking-based sampling procedure:

l:u,Z = RankS(fy, {x]‘-u}xuaﬂ, a,K)
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pseudo—labels with those sampled by RanksS:
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data loss.
* The final objective function can be expressed as:
L=1L" +aL"
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% Balancing Loss via Importance Score Weighting:
* Person-specific importance score weight:
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Experimental Results

Y Datasets

Dataset EMS ENCAA

#labelled images 33% 66% 100 % ‘ 33%  66% 100 %
POINT (fully supervised) 83.36  85.97  88.48 ‘ 84.60  88.21  89.75
Pseudo Label (PL) 83.37 8535 88.57 | 85.70 88.43  90.56
Label Propagation (LP) 82.34 86.33 86.66 | 85.36 88.61  90.18
Mean Teacher (MT) 84.50 86.29 87.55 | 83.33 84.66  87.55
Ours 87.81 88.44 89.79 ‘ 88.75 90.86 92.03

Table 1. Comparison with related methods on both datasets.

* EMS Dataset: 10, 687 images from multiple scenes.
* ENCAA Dataset: 28, 798 frames of basketball game video.
% Comparisons with related methods on both datasets
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Fgiure (a) is the distribution of top 8 importance score in testing set in EMS datasets and Figure

(b) is the statistics of unlabel

% Evaluations of different components and techniques used to estimate importance
score in proposed method
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led data’s pseudo-labels on EMS dataset. Better view in color.

Dataset EMS ENCAA Dataset EMS ENCAA
#labelled images 33% 66% 100% | 33% 66% 100 % #labelled images 33 % 66% 100% | 33% 66 % 100 %
OLII'SW/O Ranks, ISW and EW 83.70 86.81 87.67 84.35 87.66 89.93

OULS. o 199 o W 85 55 8795 8853 | 8713 9053  91.49 Oursy p 87.51 &88.10 &89.65 88.95 91.06 91.98
Oursy/o pw 86.34 87.45 89.67 | 87.68 90.60  92.00 Oursmr 87.23 88.56 90.72 | 83.97 90.93 91.62
Ours 87.81 88.44 89.79 | 88.75 90.86 92.03 Ours 87.81 88.44 89.79 | 88.75 90.86 92.03
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Table 2. Ablation study on both datasets.
sents ranking-based sampling while ISW and EW indicate impor-
tance score weighting and effectiveness weighting, respectively.
Oursy/o 1sw and Ew eans our model without using ISW and EW.

RankS repre- Table 3. Evaluation of different techniques (i.e., LP and MT)
when used for instantiating pseudo-label estimation function (i.e.,
g(-)) instead of using Softmax function.
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Examples of unlabelled images and their effectiveness weights estimated
automatically by our method.
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Examples of our method’s results and pseudo-labels estimated by different
methods during training
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(a) CMC curve on EMS dataset

(a) Importance scores estimated by our method. (b) Pseudo- labels generated by our method.

(¢) Pseudo- labels predicted by Mean Teacher. (d) Pseudo- labels estimated by Label Propagation.
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(b) CMC curve on ENCAA dataset




